Effects of Friedreich's ataxia (GAA)n·(TTC)n repeats on RNA synthesis and stability

نویسندگان

  • Maria M. Krasilnikova
  • Maria L. Kireeva
  • Vladimir Petrovic
  • Nelli Knijnikova
  • Mikhail Kashlev
  • Sergei M. Mirkin
چکیده

Expansions of (GAA)n repeats within the first intron of the frataxin gene reduce its expression, resulting in a hereditary neurodegenerative disorder, Friedreich's ataxia. While it is generally believed that expanded (GAA)n repeats block transcription elongation, fine mechanisms responsible for gene repression are not fully understood. To follow the effects of (GAA)n·(TTC)n repeats on gene expression, we have chosen E. coli as a convenient model system. (GAA)n·(TTC)n repeats were cloned into bacterial plasmids in both orientations relative to a promoter, and their effects on transcription and RNA stability were evaluated both in vitro and in vivo. Expanded (GAA)n repeats in the sense strand for transcription caused a significant decrease in the mRNA levels in vitro and in vivo. This decrease was likely due to the tardiness of the RNA polymerase within expanded (GAA)n runs but was not accompanied by the enzyme's dissociation and premature transcription termination. Unexpectedly, positioning of normal- and carrier-size (TTC)n repeats into the sense strand for transcription led to the appearance of RNA transcripts that were truncated within those repetitive runs in vivo. We have determined that these RNA truncations are consistent with cleavage of the full-sized mRNAs at (UUC)n runs by the E. coli degradosome.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Friedreich's Ataxia (GAA)n•(TTC)n Repeats Strongly Stimulate Mitotic Crossovers in Saccharomyces cerevisae

Expansions of trinucleotide GAA•TTC tracts are associated with the human disease Friedreich's ataxia, and long GAA•TTC tracts elevate genome instability in yeast. We show that tracts of (GAA)(230)•(TTC)(230) stimulate mitotic crossovers in yeast about 10,000-fold relative to a "normal" DNA sequence; (GAA)(n)•(TTC)(n) tracts, however, do not significantly elevate meiotic recombination. Most of t...

متن کامل

Replication stalling at Friedreich's ataxia (GAA)n repeats in vivo.

Friedreich's ataxia (GAA)n repeats of various lengths were cloned into a Saccharymyces cerevisiae plasmid, and their effects on DNA replication were analyzed using two-dimensional electrophoresis of replication intermediates. We found that premutation- and disease-size repeats stalled the replication fork progression in vivo, while normal-size repeats did not affect replication. Remarkably, the...

متن کامل

Genome-wide screen identifies pathways that govern GAA/TTC repeat fragility and expansions in dividing and nondividing yeast cells.

Triplex structure-forming GAA/TTC repeats pose a dual threat to the eukaryotic genome integrity. Their potential to expand can lead to gene inactivation, the cause of Friedreich's ataxia disease in humans. In model systems, long GAA/TTC tracts also act as chromosomal fragile sites that can trigger gross chromosomal rearrangements. The mechanisms that regulate the metabolism of GAA/TTC repeats a...

متن کامل

Effects of Friedreich's ataxia GAA repeats on DNA replication in mammalian cells

Friedreich's ataxia (FRDA) is a common hereditary degenerative neuro-muscular disorder caused by expansions of the (GAA)n repeat in the first intron of the frataxin gene. The expanded repeats from parents frequently undergo further significant length changes as they are passed on to progeny. Expanded repeats also show an age-dependent instability in somatic cells, albeit on a smaller scale than...

متن کامل

Chromosome fragility at GAA tracts in yeast depends on repeat orientation and requires mismatch repair.

Expansion of triplex-forming GAA/TTC repeats in the first intron of FXN gene results in Friedreich's ataxia. Besides FXN, there are a number of other polymorphic GAA/TTC loci in the human genome where the size variations thus far have been considered to be a neutral event. Using yeast as a model system, we demonstrate that expanded GAA/TTC repeats represent a threat to eukaryotic genome integri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2007